
GANchors: Realistic Image Perturbation Distributions
for Anchors Using Generative Models

Kurtis Evan David 1 Harrison Keane 2 Jun Min Noh 2

Abstract
We extend and improve the work of Model Ag-
nostic Anchors for explanations on image classi-
fication through the use of generative adversarial
networks (GANs). Using GANs, we generate
samples from a more realistic perturbation distri-
bution, by optimizing under a lower dimensional
latent space. This increases the trust in an expla-
nation, as results now come from images that are
more likely to be found in the original training set
of a classifier, rather than an overlay of random
images. A large drawback to our method is the
computational complexity of sampling through
optimization; to address this, we implement more
efficient algorithms, including a diverse encoder.
Lastly, we share results from the MNIST and
CelebA datasets, and note that our explanations
can lead to smaller and higher precision anchors.∗

1. Introduction
As use of machine learning models becomes increasingly
regulated, explainability of models similarly becomes a
pressing issue. For example, the EU’s 2018 GDPR regula-
tion stipulates that all individuals have a right to an explana-
tion of the decisions reached using their data. Explainability
of models can be approximated by global interpretability
of sets of predictions, or local interpretation of individual
predictions. (Ribeiro et al., 2018) proposed Model Agnos-
tic Anchors as a method of achieving local interpretability.
Their work formally defines an anchor A by the following:

ED(z|A)[1f(x)=f(z)] ≥ τ,A ⊆ x (1)

i.e. a subset of features in a datapoint x where, if the other

1Department of Computer Science, University of Texas
at Austin 2Department of Electrical and Computer Engineer-
ing, University of Texas at Austin. Correspondence to: kur-
tis.e.david@gmail.com <

>.

∗The associated code and datasets can be found at:
https://github.com/kurtisdavid/ImageAnchors

Figure 1. Comparison of samples generated using the original
method with the samples generated with GANchors. Our sam-
ples are a more faithful representation of the true underlying data
distribution.

features are perturbed in some distribution D, then the pre-
diction of the model remains the same on the new sampled
data z. The threshold τ is a desired confidence, and for their
tests, they use τ = 0.95. However, since this expectation is
intractable, so they provide a probabilistic definition for (1),
given that (1) defines prec(A):

P
(
prec(A) ≥ τ

)
≥ 1− δ (2)

i.e. with δ high confidence, prec(A) ≥ τ . So long as this is
achieved, then we can consider A as an anchor. However,
to find the ”best” anchor, they introduce their optimization
on the coverage of an Anchor, where cov(A) = E[A ⊆ z]:

max
A s.t. P (prec(A)≥τ)≥1−δ

cov(A) (3)

To find the anchors, they approximate the highest precision
calculation by formulating the search as a multi-armed ban-
dit problem. They utilize the KL-LUCB algorithm to solve
this. Furthermore, because this is a purely greedy approach,
to obtain a better possible solution for (3), they also imple-
ment beam search as a way to increase exploration of the
solution space.

ar
X

iv
:1

90
6.

00
29

7v
1

 [
st

at
.M

L
]

 1
 J

un
 2

01
9

https://github.com/kurtisdavid/ImageAnchors

GANchors: Realistic Image Perturbation Distributions for Anchors Using Generative Models

Figure 2. Original Anchor Method does not create images that are
representative of the underlying distribution the model was trained
for.

2. Motivation and Contributions
An important part of Anchors (Ribeiro et al., 2018) is the def-
inition of D(z|A), representing a perturbation distribution
that lies in the original training distribution. For domains
such as text, this was achieved via replacing non anchored
words in sentences with new words of the same parts of
speech and word embeddings of the original words. How-
ever, the authors did not use a realisticD(z|A) for the image
domain examples, instead producing them by overlaying
segmentations onto random test images as can be seen in
Figure 2.

The significant contributions of this paper are as follows:

1. We improve anchors for images by defining a more
realistic D(z|A) by performing stochastic gradient de-
scent on a trained generative network.

2. We propose several methods of reducing computational
complexity of optimization, including a diverse en-
coder to obtain initial projections to the latent space.

Our work improves anchors for images by generating sam-
ples from a perturbation distribution that is more consistent
with the authors’ original theory. Although the random
image and the potential anchors come from the same un-
derlying distribution, the combination of them both result
in images that are not represented in the data distribution
and are more representative of being an outlier. We do not
believe an explanation based on samples generated from
such a distribution are trustworthy. Results from this type of
analysis can result from unexplained feature interactions, de-
pending on the sensitivity of the desired classification model.
To amend this, we propose using Generative Adversarial
Networks (Goodfellow et al., 2014), trained to generate new
samples that come from the original training distribution.

3. Proposed Method and Related Work
3.1. Generative Networks

Generative Models are a class of models that attempt to
learn the distribution of the data and generate samples from
a representative distribution. While this class includes vari-
ous models such as bayesian networks and Markov Random
Fields, for this work we focus on generative adversarial net-
works, or GANs. GANs typically consist of two networks:
a generator and a discriminator that compete in a minimax
objective. The goal of the discriminator is to classify images
as real or fake, while the generators goal is the fool the dis-
criminator by generating images indistinguishable from the
real distribution. To sample from a generator, the generator
is trained to map random noise vectors z in a lower dimen-
sional latent space to the domain of the target distribution.
If successfully trained, the generator is able to create new
and diverse samples that mimic the original dataset. We will
refer to this as the manifold of the GAN for the rest of the
paper.

This ability to model underlying distributions combined
with recent advancements in the field make GANs suitable
for sampling perturbations of data points for the Anchor
algorithm. In addition, researchers have been moving to-
wards sharing trained models, making it easier to access
high quality reconstructions without having to train com-
plex networks ourselves. For testing, we explored several
pretrained GANs, including DCGAN (Radford et al., 2016),
BigGAN (Brock et al., 2019), and ProGAN (Karras et al.,
2018).

3.2. Image In-painting

One key observation to be made with their current image
framework is their use of superpixels as explainable features
made from a segmentation map. This map contains labels
for each pixel, thus to extract a certain segment i from the
image x, one can apply an element wise product with a
binary matrix A to extract a masked image x̂ = A ◦ x (we
simplify this to Ax for the rest of the paper). Thus, our task
is closely related to solving the following optimization:

min
y
||x̂−Ay|| (4)

The result of equation (1) would reconstruct an image y
that would match the masked areas of the image the most,
under a norm such as L2. Because A describes a binary
segmentation map, this problem can be viewed as image
inpainting, i.e. the task of filling in holes of a masked
image. There are multiple applications for image inpainting
due to its versatility, but the most common use for it is
to remove undesired part of an image and replace it with
realistic pixels that blends in with the rest of the image.
However, our purpose of inpainting is not to just fill in with

GANchors: Realistic Image Perturbation Distributions for Anchors Using Generative Models

plausible pixels, but also to generate images that are realistic
in terms of context. Another challenge that with inpainting
is that the superpixels found during the Anchor algorithm
are relatively small compared to the rest of the image. This
means that the hole that needs to be filled in is larger than the
part of the image that the inpainting method is optimizing
over.

One state-of-the-art inpainting method, PatchMatch, fills
in masked holes with smooth results, but uses image statis-
tics of the unmasked image to fill in the missing portion
(Barnes et al., 2009). This prevents the method from us-
ing a semantically-aware approach and often fills in the
holes with undesired parts of superpixels. Additional lim-
itations of other methods include strong assumptions of
masked holes. For example, Pathak et al. assumes that the
masked hole is a rectangle with dimensions of 64 × 64 that
is centered in the middle of the image (Pathak et al., 2016).
This would be unfeasible for our research since random
segmentation can return scattered and irregular superpixels.
Finally, Partial Convolution (Liu et al., 2018) is an inpaint-
ing method proposed by NVIDIA that uses deep learning to
fill irregular holes by learning semantic priors and hidden
representations. However, there are still limitations of this
model in that it is deterministic and there is not a way to
properly generate multiple realistic perturbations given an
anchor.

3.3. Compressed Sensing with Generative Models

Image inpainting is one problem contained in the topic of
Compressed Sensing. The goal is to reconstruct original
measurements x∗ given lossy measurements x̂ defined by a
measurement matrix A.

x̂ = Ax∗ + η

This equation is actually overdetermined, since x̂ actually
lies in a lower dimensional subspace. To solve this and
create natural solutions, a sparse prior is induced on possible
reconstructions y. We can reframe Equation (4) to:

min
y
||x̂−Ay||+ λ||y||1 (5)

However, this can still be computationally heavy if the do-
main is in the image space. Bora et al. suggested alternative
to (5) by restricting possible reconstructions y on the mani-
fold of a trained GAN (Bora et al., 2017). This can be found
in Equation (3). This enforces a natural image prior based
off of the quality of the GAN, and reduces the optimization
to a significantly lower-dimensional latent space. One of
their applications was image inpainting, and we believe that
there is promise in utilizing their framework due to the in-
creasing capabilities of these generative networks, as well
as being able to mimic the original training set – the exact
problem we are trying to solve.

min
z
||x̂−AG(z)|| (6)

3.4. Realistic Image Sampling

Under the optimization of (6), we observe that this is highly
non-convex, due to the complex structure of generative net-
works. We can use this observation to apply a simple sam-
pling algorithm; depending on the initialization of the latent
vector z ∈ Rd, we may obtain very different reconstructions
from G(z). Additionally, because it is unfeasible to repeat-
edly optimize (2) to small values, we introduce a reconstruc-
tion threshold ξ. We then define valid reconstructions y
from the GAN that contain an anchor A as:

y = G(z) s.t. ||x̂−Ay|| < ξ (7)

Reconstructions y can now be found by running gradient de-
scent. However, to use these reconstructions in the Anchor
algorithm, we must guarantee that x̂ is within the image.
Thus, the final reconstruction uses the generated image to
fill in the holes of x̂ found in (4) as well as Algorithm 1.
Examples compared to original random stitching method
can be seen in Figure 4.

y = (1−A)G(z) + x̂ s.t. ||x̂−AG(z)|| < ξ (8)

Algorithm 1 Sample y ∼ D(·|A)

Require: Trained GAN G, Threshold ξ, Anchor A, Target
x̂, Learning rate α

1: function SAMPLE(G, ξ,A, x̂, α)
2: z ← N (0, 1)
3: while ||x̂−AG(z)|| > ξ do
4: z ← z − α∇||x̂−AG(z)||
5: end while
6: y ← (1−A)G(z) + x̂
7: return y
8: end function

Following the midterm project, we realized that our original
algorithm is biased towards generating samples immediately
below the threshold ξ. There exist other possible images that
could have lower anchor reconstructions, so we wanted to
extend our work to include these possibilities. To implement
this, we pass different thresholds< ξ into our reconstruction
algorithm, sampled according to a threshold distribution.
However, this can become computationally inefficient if
much smaller thresholds are consistently used.

Thus, we first apply a probabilistic prior on possible re-
constructions. Specifically, we contend that the densities
of these reconstructions decreases as ξ decreases. This is
because at each possible level, there will be fewer local
minima that can reach small reconstruction errors on the

GANchors: Realistic Image Perturbation Distributions for Anchors Using Generative Models

manifold. Figure 3 visualizes this concept. To incorporate
this prior, we can define a decreasing probability distribution
to sample other thresholds ξ′ < ξ where ξ is the original
max threshold. Algorithm 2 provides an example we use in
our project on how to do this. We are essentially collecting
points centered at ξ and throwing away any invalid thresh-
olds. We also use a small standard deviation to mimic an
exponential decrease of densities. Future work can make
this more accurate or learn the true distribution of our algo-
rithm.

Figure 3. Non-convex solution space for Anchor Reconstruction.
Darker contours imply a smaller reconstruction error.

Algorithm 2 Sample ξ′ < ξ

Require: Max Threshold ξ
1: function THRESHOLD-SAMPLE(ξ)
2: while True do
3: ξ′ ∼ N (µ = ξ, σ = ξ/6)
4: if ξ′ > 2ξ or ξ′ < 0 then
5: continue
6: end if
7: if ξ′ > ξ then
8: ξ′ ← ξ − ξ′
9: end if

10: return ξ′
11: end while
12: end function

4. Speed Improvements
When we implement Algorithm 1 to compute anchors, it
quickly becomes intractable in that the KL-LUCB algorithm
to estimate the precision will require many samples. In
following sections, we will cover improved methods that
increase the computational efficiency of GANchors.

4.1. Batch Sampling

One natural improvement to Algorithm 1 is to initialize a
large batch of z and jointly optimize each under the mean

Figure 4. Comparison of Sampling using MNIST

loss. This is easily done in deep learning libraries such as
PyTorch (Paszke et al., 2017). To make this as efficient as
possible, we apply additional modifications. First, we only
update latent vectors z if their reconstruction error of the
anchor is above the desired threshold. If they are below the
threshold, we instantly collect the reconstructions G(z) and
replace these latent vectors with new ones from the same
initial distribution.

Secondly, if applying Algorithm 2 to obtain several possible
ξ′, a naive matching algorithm would suffer from unlucky
initialization. To remedy this, we sort latent vectors z by
their anchor reconstruction loss, decreasing, and sort thresh-
olds ξ′, increasing, and match based on the same indices.
We chose to do this because it can be done easily using vec-
torized operations on tensors. This approach is summarized
in Algorithm 3.

Algorithm 3 Batch Sample y ∼ D(·|A)

Require: Trained GAN G, Thresholds {ξ′}, Anchor A,
Target x̂, Learning rate α, Number of Samples N

1: function SAMPLE-BATCH(G, {ξ′}, A, x̂, α,N)
2: Fill set Z with N samples from z ∼ N (0, 1)
3: Y ← ∅
4: Ξ← {ξ′}
5: while |Y | < N do
6: L ← {||x̂−AG(zi)||}
7: Sort L increasing. Use indices to resort Z.
8: Sort Ξ decreasing
9: Match Z and Ξ

10: Ẑ ← {zi s.t.||x̂−AG(zi)|| ≤ ξ′i}
11: Z ← {zi s.t. ||x̂−AG(zi)|| > ξ′i}
12: Y ← Y ∪ (1−A)G(Ẑ) + x̂
13: Remove ξ′i used in Ẑ from Ξ
14: end while
15: return Y
16: end function

GANchors: Realistic Image Perturbation Distributions for Anchors Using Generative Models

4.2. Diverse Encoder

When applying our algorithms to our datasets as seen in
Section 5, we found that the speeds were still incomparable
to the original method. To push this further, we make use
of a technique used in (Zhu et al., 2016). Their objective
was to project an input image x to the manifold of possible
images generated on a trained GAN, by following a similar
optimization to Algorithm 1, without any masking. They
also noted that this is highly dependent on initializations and
wanted to reduce time taken. As a solution, they incorporate
another encoder network P that maps the input image to
some vector in the d−dimensional latent space of the GAN
G. This encoder is optimized with the following:

min
θP

Ex[||x−G(P (x))||] (9)

Essentially, their goal is to have some deterministic network
to immediately project the input image to a good recon-
struction that lies on the manifold of G. This provided a
significant speedup to their setup; however, this is not imme-
diately usable in our case. Our goal is to replace the initial
sampling of our latent vectors z with a similar network, but
if they all begin at one point (since P is deterministic), then
we will no longer get diverse samples.

To solve this problem, we instead create a diverse encoder
P̂ , that outputs more than one vector z. Suppose that the
latent space of G is in R100. An encoder from (Zhu et al.,
2016) would output a 100-dimensional vector. Instead of
doing this, P̂ will output an N × 100-dimensional vector
where N denotes the number of possibly encoded vectors
desired from the network. So, if N = 8, then it will out-
put 8 possible latent vectors, from a single input image x:
{zi i = 1, ..., 8} such that each G(zi) is a faithful recon-
struction of x. However, we want to encourage diversity –
trivially, P̂ can learn to output N copies of the same vector,
and we reach a similar issue. Thus we add in an additional
regularization term that computes pairwise distances be-
tween the different encodings:

min
θP̂

Ex[

N∑
zi∈P̂ (x)

||x−G(zi)|| − λ
N∑
i6=j

||zi − zj ||] (10)

Notice that because we are trying to minimize (10), this
would push the different outputs of P̂ towards different lo-
cations in the latent space. Because this is unconstrained
(since the network could just output very large and differ-
ent vectors but not any good reconstructions), we apply a
maximum t on the norm of the λ term. Numerically it is
modified to the following:

min
θP̂

Ex[

N∑
zi∈P̂ (x)

||x−G(zi)||+ λ

N∑
i 6=j

(
||zi − zj || − t

t
)2]

(11)

Lastly, because our sampling algorithm takes a masked
image x̂ as input, we train P̂ to reconstruct masked images
instead. The final version can be found in (12), where A is
a randomized segmentation map. To augment Algorithm 3,
we replace the initialization of z in Line 2 by first encoding
the target x̂ and then adding random noise to help induce
more diversity.

min
θP̂

Ex[

N∑
zi∈P̂ (x)

||Ax−AG(zi)||+λ
N∑
i 6=j

(
||zi − zj || − t

t
)2]

(12)

5. Experiments and Results
5.1. MNIST

To initially validate our various algorithms during testing,
we opted to use MNIST (LeCun & Cortes, 2010). We first
trained a small convolutional neural network to predict the
class and achieved a 99% accuracy on the test set. We also
use a pretrained DCGAN implementation (Csinva, 2019) for
all of our testing. To run explanations using our algorithm,
we set a max anchor MSE threshold ξ = 0.05. To obtain
samples for speed and precision analysis, we took a single
test image from each class and ran three trials on each to
compare the different methods in Section 4 as well as their
baseline method. We limited testing to this scenario due
to the large complexity of the naive methods. For segmen-
tations, we use the quickshift algorithm from scikit-image.
We wanted each example to produce exactly 15 segments
each, so we modify the max distance parameter through a
binary search to obtain the desired number of segments.

Sampling Method Time (min.)
Random Stitching 0.08
Batch 34.87
Batch + Batch Norm 4.46
Diverse Encoder 1.62

Table 1. Average Explanation Time

For batch processing, we use a batch size of 64 and apply
random restarts every 1000 iterations to help escape sub-
optimal local minima on the manifold. We use the Adam
optimizer to run gradient descent. During experiments, we

GANchors: Realistic Image Perturbation Distributions for Anchors Using Generative Models

noticed that batched processing took much longer than ex-
pected; upon inspection of the GAN’s architecture, we found
batch normalization layers (Ioffe & Szegedy, 2015). We
hypothesize that this created a significant bottleneck for our
algorithm.

Batch normalization aims to solve the problem of inter-
nal covariate shift, or unscaled input distributions within
each layer of the network. The hypothesis is that network
performance, originally on classification tasks, can be im-
proved significantly if inputs to each layer can be normal-
ized, much like how input features are normalized during
pre-processing stages. This has also extended to generative
networks, as it can lead to more stable training. During
training, the layers collects the minibatch mean (µB) and
variance (σ2

B) of its inputs and compute the new output y
with the following:

x̂i ←
x− µB√
σ2
B + ε

yi ← γx̂i + β

Figure 5. Batch Normalization Layer Operations

The learned parameters are γ and β. The issue arises during
the layer’s behavior during training and testing mode. In
training mode, it uses µB and σ2

B, but also computes a run-
ning mean and variance, µD and σ2

D, respectively. In testing
mode, it uses these estimates µD and σ2

D to normalize, with
the same scheme as in Figure 5. This is an issue, because
these learned estimates from the pretrained GAN do not
reflect the new batches during our sampling. The original
training assumed an input distribution of N (0, 1), whereas
our input distribution is constantly changing – it is only
optimized so that every output from the GAN achieve an
MSE reconstruction threshold of the desired anchor. When
only using training mode, our time significantly decreases,
as seen in Table 1.

Lastly, we implemented a diverse encoder for the MNIST
dataset. We first run the quickshift algorithm on the dataset
to obtain segmentations beforehand - this would speed up
training time as they can be expensive to compute in real
time. Then, we create a small convolutional neural network
that takes a masked image as input and then outputs 8 pos-
sible encodings, by outputting an 800 dimensional vector,
since the latent space of the GAN is in R100. To train this
we use the loss function in Equation (8) of Section 4 with
λ = 1, and t = 10. We also apply an upperbound on the
norm of pairwise errors to be 10. The input segmentations
are randomized, by selecting each segment label with a
probability of 0.5. We apply early stopping after a single
iteration through the training set. We show examples of both

good and bad results in Figure 6 and 7.

Figure 6. Good Diverse Encoder Outputs

Figure 7. Bad Diverse Encoder Outputs

First note that this diverse encoder is only trying to produce
encoded vectors that when decoded and masked, match well
the the masked input. The reason we distinguish between
good/bad in these figures are the whole images produced
by the network. In Figure 6, it actually produces realistic
two’s similar to the original image, but Figure 7 shows noisy
and nonsensical images. This is most likely due to a small
amount of disconnected signals that are used as inputs to
the encoder. Nevertheless, we are only looking to use these
encoded vectors as starting areas for optimization, so they
do not have to be perfect at reconstruction.

To test the effectiveness of these methods, we first measure
the average time to produce a single explanation with dif-
ferent sampling methods for D(z|A). These can be found
in Table 1. We see that improvement to sampling changes
the average time by an order of magnitude, however cannot
reach the times produced by the original random sampling
method. We believe that if the encoder was more finely
trained, faster times can be achieved, but that tradeoff is
acceptable to a certain extent for more realistic sampling.

Additionally, we measure the precision of our explanations
on the same set as another metric of comparison. These
can be found in Table 2. Immediately we can see that our
explanations achieve a higher precision, and smaller sizes
of anchors. We hypothesize that this happens due to the
inherent structure of natural images, especially those that

GANchors: Realistic Image Perturbation Distributions for Anchors Using Generative Models

are learned by a trained GAN. Given a subset of pixels
that must be reconstructed, there exist a smaller amount of
possible digits. For example, in Figure 6, we can see that
the structure of the masked input contains the curves one
would only see in handwritten 2s. There exist correlations
between the grouping of pixels that actually provide more
information for the classification, since the GAN would
only create perturbation that look like 2s. Thus, as the
anchor size increases, the classifier sees a more and more
restricted perturbation distribution. We assert that this is
expected behavior, as we are now only testing the classifier
on true digits, rather than a random mixture of different parts.
This however weakens the explanation, as the segments
shown now describe pixels that result in the same prediction,
or are correlated to other pixels that result in the same
prediction. Further work must still be done to strengthen
these conclusions. Nevertheless, the explanations are more
faithful to the true distribution of data, as the explanations
from the original random stitching method can also be a
result of correlations between outlier signals of the random
images. We have also included side by side comparisons in
Figure 8.

Sampling Method Precision Size of Anchor
Random Stitching 0.982 4.2
Batch + BN 0.987 1.87
Diverse Encoder 0.993 1.63

Table 2. MNIST Anchor Precisions. We omit non Batch Norm
results as samples were initialized the same way. Size of Anchor
defined as the average number of segments.

Figure 8. Computed Anchor Comparisons Left: Original Random
Stitching Sampling. Right: Sampling from a trained GAN

5.2. CelebA-HQ

While the original authors’ explored anchors on ImageNet,
state of the art GANs for the dataset were mainly class-

condition, including BigGAN. It proved to be a challenge to
generate samples below a desired threshold ξ while selecting
random classes. Due to this, we opted to use CelebA-HQ
(Tero Karras, 2018), a dataset of 1024x1024x3 images of
celebrity faces created by passing CelebA through a super-
resolution network. The generative model associated with
this dataset is ProGAN (Karras et al., 2018), a progressively
grown generator which outputs high resolution, realistic
1024x1024x3 images of faces. For the purposes of compu-
tation time and memory, we scaled down both the dataset
and generator output to 256x256x3.

For the purposes of testing, we trained a convolutional neu-
ral network using ResNet18 to predict whether the image
was smiling or not. The classifier we attempted to explain
achieved a validation accuracy of 93%. The units for CelebA
anchors were segments achieved using SLIC (numsegments
= 10, compactness = 20). Finally, we had to qualitatively
select an anchor MSE threshold at which to collect the
samples based on running time, quality of the match, and
variation of results. After testing in the range of [0.01, .15],
we found that .075 would be sufficient for our experiments.
The results of this threshold testing can be seen in Figure
9. The CelebA experiments were ran on a single GTX1080
with an i5-4790k at 3.5Ghz.

The anchors our method found were consistent with intuition
in that the anchor was the lower face, mouth, or combination
of the two. Naturally, these are important segments for smil-
ing and thus result in a valid explanation of the image. All
of the anchors seen in Figure 10 generated by our algorithm
achieved a precision of 1.0.

We also try to train a diverse encoder on the CelebAHQ
dataset. To do this, we obtain masks from CelebAHQ-
Mask (Liu, 2019) and create an encoder that outputs N = 2
encodings. This is limited due to the large memory con-
sumption needed to use ProGAN. We trained on random
segmentations, much like in MNIST, with a batch size of
8. To stabilize training, we found that we also had to apply
L2 regularization on the encoder’s outputs, as they tend to
diverge towards large vectors. We use λ = 1e-3 and L2
regularization parameter of 1e-6. We have included results
of an example encoding and patched up results in Figure
11. Unlike MNIST, our encoder was unable to achieve both
decent reconstructions as well as diversity. The reconstruc-
tions themselves look very blurry, as if they are average
images in the dataset; it proved difficult to train due to the
sheer size of the input images. In addition, when we used
these as starting points for our batch search, this resulted in
all very similar images, with less quality than compared to
Figure 9. For this reason, we stuck to randomly initializing
from N (0, 1).

GANchors: Realistic Image Perturbation Distributions for Anchors Using Generative Models

Figure 9. Batch samples generated at various MSEs. As the thresh-
old decreases, the samples have lower variance, but higher running
time. Additionally for anchor purposes, a baseline variance is
necessary to actually test the potential anchor. We found .075
balanced the these tradeoffs appropriately.

6. Discussion
6.1. Limitations

A considerable drawback of this approach is the computa-
tional complexity of having to run a GAN. Even though
we were able to dramatically increase the average speed of
generating anchors for images from hours to a few minutes,
the time to train a GAN as well as sample enough cover-
age samples for a robust anchor is still considerably high,
for example if one wanted to generate explanations for a
large dataset. Furthermore, running ProGAN with a batch
size of 4 inside our anchor sample generation algorithm re-
quired at least 8GB of GPU memory on a single GTX1080.
The high memory consumption limits the speedup gained
through batch, and could potentially be optimized for a
larger speedup. This bottleneck also makes it difficult to
train a successful diverse encoder on large datasets, but we
hope that the idea can be explored more.

Our work also relied heavily on qualitatively searching for
optimal hyperparameters for generating realistic images. We
considered various boundary error methods to measure how
well a sampled background fit the anchor, but in cases with
a clean segmentation cut there would be higher acceptable

Figure 10. Anchors for the prediction of smiling or not smiling.
For most cases, the anchor involved the lower face and mouth,
intuitively sufficient for smiles. All anchors seen above achieved a
precision of 1.0. Compared with the bottom row from the original
method, our anchors tend to be smaller with better precision.

Figure 11. Diverse Encoder on CelebA-HQ. Left: Original
Masked Image Middle: Reconstructions from Diverse Encoder
Outputs Right: Results from applying our Sampling Algorithms

boundary differences than an anchor in the center of a homo-
geneous area. Without making considerable assumptions,
we were unable to define a contextual realism metric of how
well an anchor maps onto a sample without extending the
anchor outside of its bounds or using information from the
original image not found in the anchor.

Finally, our work assumes that an unconditional GAN exists
for the data distribution that the classifier is trained on. Thus,
the challenges of training a GAN are transferred to our work.
This difficulty can be relieved through sharing of models
and public access to datasets and generators.

6.2. Future Work

While our project was limited to the image domain, the use
of GANchors could be applied to other domains, be that
text, tabular or time series. As GANs model a mapping from
a latent space to the underlying data distribution, they could
theoretically be used to sample from any distribution in most

GANchors: Realistic Image Perturbation Distributions for Anchors Using Generative Models

domains. By incorporating GANs into the anchor pipeline,
this technique could be increasingly model-agnostic, simply
accepting a generator and explainable feature extractor spe-
cific to the model/domain. In addition, we would also like to
supplement our hypotheses of more realistic perturbations
by developing a new metric that could reflect the similarity
to a reference set. Something along the lines of a BLEU
score but for images is what we have in mind.

References
Barnes, C., Shechtman, E., Finkelstein, A., and Goldman,

D. B. PatchMatch: A randomized correspondence algo-
rithm for structural image editing. ACM Transactions on
Graphics (Proc. SIGGRAPH), 28(3), August 2009.

Bora, A., Jalal, A., Price, E., and Dimakis, A. G. Com-
pressed sensing using generative models. In Precup, D.
and Teh, Y. W. (eds.), Proceedings of the 34th Interna-
tional Conference on Machine Learning, volume 70 of
Proceedings of Machine Learning Research, pp. 537–546,
International Convention Centre, Sydney, Australia, 06–
11 Aug 2017. PMLR. URL http://proceedings.
mlr.press/v70/bora17a.html.

Brock, A., Donahue, J., and Simonyan, K. Large scale
GAN training for high fidelity natural image synthesis. In
International Conference on Learning Representations,
2019. URL https://openreview.net/forum?
id=B1xsqj09Fm.

Csinva. Pretrained gans in pytorch for mnist/cifar.
https://github.com/csinva/pytorch_
gan_pretrained, 2019.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y. Generative Adversarial Networks. arXiv e-prints, art.
arXiv:1406.2661, Jun 2014.

Ioffe, S. and Szegedy, C. Batch normalization: Ac-
celerating deep network training by reducing internal
covariate shift. In Proceedings of the 32Nd Inter-
national Conference on International Conference on
Machine Learning - Volume 37, ICML’15, pp. 448–
456. JMLR.org, 2015. URL http://dl.acm.org/
citation.cfm?id=3045118.3045167.

Karras, T., Aila, T., Laine, S., and Lehtinen, J. Progres-
sive growing of GANs for improved quality, stability,
and variation. In International Conference on Learning
Representations, 2018. URL https://openreview.
net/forum?id=Hk99zCeAb.

LeCun, Y. and Cortes, C. MNIST handwritten digit
database. 2010. URL http://yann.lecun.com/
exdb/mnist/.

Liu, G., Reda, F. A., Shih, K. J., Wang, T.-C., Tao, A., and
Catanzaro, B. Image inpainting for irregular holes using
partial convolutions. In The European Conference on
Computer Vision (ECCV), September 2018.

Liu, Z. A large-scale face dataset for face parsing, recogni-
tion, generation and editing. https://github.com/
switchablenorms/CelebAMask-HQs, 2019.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in pytorch. 2017.

Pathak, D., Krähenbühl, P., Donahue, J., Darrell, T., and
Efros, A. Context encoders: Feature learning by inpaint-
ing. In CVPR, 2016.

Radford, A., Metz, L., and Chintala, S. Unsupervised rep-
resentation learning with deep convolutional generative
adversarial networks. In ICLR, 2016.

Ribeiro, M. T., Singh, S., and Guestrin, C. Anchors: High-
precision model-agnostic explanations. In McIlraith,
S. A. and Weinberger, K. Q. (eds.), Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence,
(AAAI-18), the 30th innovative Applications of Artificial
Intelligence (IAAI-18), and the 8th AAAI Symposium
on Educational Advances in Artificial Intelligence
(EAAI-18), New Orleans, Louisiana, USA, February
2-7, 2018, pp. 1527–1535. AAAI Press, 2018. URL
https://www.aaai.org/ocs/index.php/
AAAI/AAAI18/paper/view/16982.

Tero Karras, Timo Aila, S. L. J. L. Progres-
sive growing of gans for improved quality, stability,
and variation. https://github.com/tkarras/
progressive_growing_of_gans, 2018.

Zhu, J.-Y., Krähenbühl, P., Shechtman, E., and Efros, A. A.
Generative visual manipulation on the natural image man-
ifold. In Proceedings of European Conference on Com-
puter Vision (ECCV), 2016.

http://proceedings.mlr.press/v70/bora17a.html
http://proceedings.mlr.press/v70/bora17a.html
https://openreview.net/forum?id=B1xsqj09Fm
https://openreview.net/forum?id=B1xsqj09Fm
https://github.com/csinva/pytorch_gan_pretrained
https://github.com/csinva/pytorch_gan_pretrained
http://dl.acm.org/citation.cfm?id=3045118.3045167
http://dl.acm.org/citation.cfm?id=3045118.3045167
https://openreview.net/forum?id=Hk99zCeAb
https://openreview.net/forum?id=Hk99zCeAb
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://github.com/switchablenorms/CelebAMask-HQs
https://github.com/switchablenorms/CelebAMask-HQs
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16982
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16982
https://github.com/tkarras/progressive_growing_of_gans
https://github.com/tkarras/progressive_growing_of_gans

