
Debiasing Convolutional Neural Networks via
Meta Orthogonalization

Kurtis Evan David
UT Austin

Qiang Liu
UT Austin

Ruth Fong
University of Oxford

Abstract

While deep learning models often achieve strong task performance, their successes
are hampered by their inability to disentangle spurious correlations from causative
factors, such as when they use protected attributes (e.g. race, gender, etc.) to make
decisions. In this work, we tackle the problem of debiasing convolutional neural
networks (CNNs) in such instances. Building off of existing work on debiasing
word embeddings and model interpretability, our Meta Orthogonalization method
encourages the CNN representations of different concepts (e.g. gender and class
labels) to be orthogonal to one another in activation space while maintaining strong
downstream task performance. Through a variety of experiments, we systematically
test our method and demonstrate that it significantly mitigates model bias and is
competitive against current adversarial debiasing methods.1

1 Introduction

Recently, deep learning has been increasingly applied to a number of high-impact yet high-risk
domains, like autonomous driving and medical diagnoses. The success of deep learning has been
attributed to its ability to capture complex, highly predictive patterns from large amounts of data.
However, a number of works have revealed how a variety of machine learning approaches often
reflect and amplify existing human biases.

In natural language processing, Bolukbasi et al. [3] showed that word embeddings such as
Word2Vec [19] and GloVe [21] reflected gender biases that occur naturally in most human texts and
more closely associated the “man” concept to “computer programmer” and “woman” to “homemaker.”
Due to the unsupervised nature of training these embeddings, it highly suggests that the corpora used
to train them exhibit human and societal bias that are reflected in recorded writing [4]. As society
gradually moves away from discriminating against protected classes, we may begin to have access
to more unbiased data to train models. In the meantime, it is imperative that we design smarter
algorithms that learn to ignore these biases while maintaining strong performance.

Of course, computer vision is no exception. Recently, Menon et al. [18] has garnered much attention,
showing that their facial upsampling can skew towards a Caucasian population. Much debate ensued,
as societal bias can seep into the model through multiple ways, but this does not change the fact
that we want our models to be independent of any harmful biases. One line of work to prevent this
has focused on targeting fairness metrics primarily through adversarial learning [8]. This requires
careful tuning due to the inherent min-max game, as well as the need for additional neural networks
when utilizing an autoencoder in the framework [17]. We thus pose the following: can we debias
convolutional neural networks (CNNs) without adversarial learning, but instead through similar
geometric arguments used for word embeddings?

This paper empirically explores if this is possible, while using adversarial learning as a baseline to
analyze any possible advantages and disadvantages. The structure of our paper is as follows. Section

1Code available at https://github.com/kurtisdavid/MetaOrthogonalization
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2 surveys relevant literature to our method as well as adversarial debiasing. Section 3 frames the
problem in the context of image concepts [7, 14], a method used to interpret trained CNNs, and also
defines our metrics of fairness. Section 4 then highlights our proposal, Meta Orthogonalization;
we also describe how to systematically test the various models against various situations of dataset
bias. Section 5 presents the results, including our performance on the real world COCO dataset [16].
Section 6 summarizes and highlights our key results.

2 Related Work

We now survey a few recent papers closely tied to concepts in our proposal. Fairness literature
has garnered much attention in order to create trustworthy models deployed in the wild. Some
solutions offer post-processing the model at inference time [10] to guarantee certain constraints. In a
similar fashion, Bolukbasi et al. [3] apply a transformation to desired word embeddings to guarantee
orthogonality to bias vectors in their subspace. Because this can introduce loss of downstream
performance, Kaneko and Bollegala [13] instead augment training with a regularization term that
penalizes undesired collinearity. In this paper, we follow this example, where the goal is to train a
fair model without post-processing.

Adversarial Debiasing. Naturally, adversarial learning [9] has seen much success in this space.
Originally used to train a generator to generate realistic data from datasets, methods have been
developed to utilize similar discriminator models that act as adversaries to the original model. The
goal of the discriminator in this case is to be able to predict protected attributes in the dataset from
information within the original model. Beutel et al. [2] apply this idea to obtain demographic parity
constraints. Zhang et al. [27] extend this idea by enforcing orthogonal learning updates of the
model and discriminator, to mitigate the leakage of information shared between the networks. This
methodology is not restricted by dataset types; Wadsworth et al. [24] apply the same framework
to recidivism, and Madras et al. [17] describes the same algorithm augmented with an input-level
autoencoder to create fair representations that transfers across different tasks on the same dataset.
Lastly, Wang et al. [25] highlight the gender bias in vision systems for object detection and action
recognition, and analyze the effects of adversarial learning to their introduced metric. As this paper
most closely relates to our domain, we utilize it as our main baseline model comparison, and include
their leakage metric for evaluation.

Other Relevant Work Although adversarial learning has shown strong results, other interesting
methods have been released. In particular, interpretability literature has generated methods that can
easily be used in the fairness space. Fong and Vedaldi [7], Kim et al. [14], Zhou et al. [29] learn image
concept embeddings to explain fully trained models. Chen et al. [5] tackle the task of aligning these
concepts to specific dimensions in the latent space of a network, essentially becoming an orthogonal
but explainable basis. However, this is not entirely optimal, because it can be the case that certain
concepts are highly correlated. This closely resembles similar ideas in our proposal; however, we
only target orthogonality of image concepts w.r.t. biased information. Much work has also gone into
studying inherent biases found within training datasets. Lapuschkin et al. [15] find that major datasets
contained photos that were tagged by reoccurring watermarks. Through saliency methods, they show
that the neural network heavily weighted those pixels; because these watermarks do not have explicit
labels, they proposed an unsupervised clustering method on the saliency maps to automatically detect
various learning behaviors of the CNN, including the dependence of the logos. Similarly, Yang and
Kim [26] found that under a 1:1 co-occurrence between a pasted object and scene, the saliency maps
would indicate that the CNN would pay less attention to the object, compared if only a small ratio of
images had these pasted objects.
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3 Background

Preliminary. We now formalize the task explored in the rest of the paper. Let D =
{(x(i), Y (i), A(i))} be our dataset of images x(i) ∈ R3×H×W , labels Y (i) ∈ {0, 1, ..., N − 1},
and protected attributes A(i) ∈ {0, 1}.2 Our downstream task is image classification – i.e. predicting
Y (i) from x(i). To do this, we learn a CNN fθ : R3×H×W → RN , and given a desired layer l,
f
(l)
θ : R3×H×W → Rd will denote its intermediate representation at layer l. Depending on the

desired downstream task, the parameters θ will be trained to minimize some loss function. In the
case of image classification, this will be cross entropy.

Image Concepts. Similar to word embeddings in NLP, concepts in images (such as colors, objects,
textures) can also be represented as embedding vectors. Given fθ suppose we have auxiliary concept
labels. Given a concept c, we would like to learn its corresponding embedding βc. To do this, Fong
and Vedaldi [7], Kim et al. [14], Zhou et al. [29] learn linear classifiers gc = β>c z + bc that operate
on some intermediate representation of the network, i.e. zθ(x) = f

(l)
θ (x).3 Concept-specific datasets

are then generated and these classifiers are trained to minimize a binary log-loss for the concept. The
final embedding βc now point in the direction to examples that are positive for concept c. Fong and
Vedaldi [7] further observe that these concepts also have similar vector arithmetic properties as word
embeddings; thus, this might suggest that we can also debias image concept embeddings through
similar geometric arguments found in NLP literature [3, 13].

Fairness Measures. To evaluate our models, we describe measures of fairness applicable to the
main image classification task. The first is equality of opportunity [10]. Given a specific class
y = 0, ..., N − 1 and protected attribute A, we would like:

Pr(Ŷ = y|A = 0, Y = y) = Pr(Ŷ = y|A = 1, Y = y), (1)

where Ŷ represents the model prediction. Normally this measure is for binary classification, but it is
extensible to the multi-class setting, as each class is mutually exclusive. To measure each model’s
faithfulness to this equality, we compute the absolute difference of both sides in Equation 1. We
denote this as Opportunity Discrepancy for the rest of the paper.

Second, we report model leakage – Wang et al. [25] compute this by training another classifier h
trained to predict the protected attribute A, from the final logits of the network. The resultant leakage
of the model is then just its accuracy, where its ideal value is 50%:

λ(fθ) =
1

|D|

|D|∑
i=1

1[h(f(x(i))) = A(i)]. (2)

Third, we follow Bolukbasi et al. [3], Kaneko and Bollegala [13] by studying the geometric infor-
mation found in the image concept embeddings of our trained model. Specifically, we learn a βc
for every downstream class, in addition to two more embeddings corresponding to the positive and
negative class of our protected attribute A. The overall bias direction is defined as ν = βA+ − βA− ;
if βc is the learned embedding of concept c, then we can measure its projection on the bias direction
ν. To remove the effect of magnitude, we compute the correlation between these two vectors and dub
our third measure as class specific projection bias, ω(c). If this is non-zero, then that means that the
model has learned to correlate class specific information with predictive information of the protected
attribute:

ω(c) =
β>c ν

||βc||2||ν||2
. (3)

Lastly, Kim et al. [14] introduce the use of directional derivatives to explain a model, with additional
post-processing. To compute the unprocessed value, we can just substitute βc in Equation 3 with

2In this work, we only consider binary labels for protected attributes, but recognize that this may not be
representative of all possible values, e.g. gender, race, sexuality.

3In the case that layer l is convolutional, i.e. its activation is a 3D tensor, the activation is first spatially
summed to produce a vector.
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the gradient of the network for class c for a specific input x: ∇f(l)(x)fc(x). This directly connects
the downstream task with bias in the model – if these are highly correlated, then the performance
of the model must be closely dependent to how it detects the bias attribute. We refer to this as
sensitivity bias. Similar arguments of sensitivity have also been used for visual interpretability in
neural networks [1, 20].

4 Method

Meta Orthogonalization. We now propose our debiasing method. At a high level, we can decompose
it into three separate losses used during training:

1. Classification Loss (Lclass) – original task loss to train the CNN, e.g. cross entropy.

2. Concept Loss (Lconcept) – log-loss to learn image concept vectors at a specific layer.

3. Debias Loss (Ldebias) – our regularization term to induce orthogonal concepts.

co
nv
1

co
nv
2

co
nv
3

co
nv
4

fc
0.02
…
0.89
…
0.09

bicycle
…
oven
…
laptop

Lclass

Ldebias

vgender
voven voven

vgender

Lconcept

Figure 1: Method Overview. Our method debiases a CNN at an intermediate layer by encouraging
the concept vector of a protected attribute and that of a downstream class to be orthogonal.

Both Lclass and Lconcept have been discussed in Section 3. The only difference is that we simulta-
neously learn our concept embeddings βc, rather than at the end of training, because βc is directly
used in our proposed regularization Ldebias. Following the intuition behind our projection bias
measure (Eq. 3), we initially wanted to augment training similar to [13], with the regularization term

Ldebias(β) =
∑
c ω(c)

2 =
∑
c

(
β>c ν

||βc||2||ν||2

)2
to minimize projection bias. Although this regularizes

the training of the concept embeddings, this does not affect the model parameters θ at all, since βc
are independent parameters from the CNN.

In order to solve this problem, we introduce the core of our algorithm: a single meta-step, inspired by
similar techniques in [6, 22]. Assuming βc is learned using SGD, at every iteration, βc is updated to
β′c = βc − α∇βcLconcept(c, θ). The log loss computed by Lconcept is itself a function of θ, and thus
β′c is also a function of θ which can now be used to regularize the CNN:

Ldebias(β
′) =

∑
c

(
β′>c ν

||β′c||2||ν||2

)2

. (4)

In all, we summarize our method, Meta Orthogonalization, as the following minimization; when
performed successfully, the goal is to end up with models whose projection bias is minimized after
training:
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min
θ,β

Lclass(θ) +
∑
c

Lconcept(c, β) + γLdebias(β
′). (5)

In all our tests, we use ResNet-50 [11] as fθ. We learn image concept embeddings and apply Meta
Orthogonalization at convolutional layer layer3.4 To choose this layer, we observe the variance of
sensitivity bias across varying levels of controlled bias (explored in the next section). This particular
layer showed the highest variance of bias, and thus we want to target this during training – for more
specifics, refer to Appendix C, Figure 1.

Controlling Bias. As part of this study, we do apply our method to the COCO dataset [16], but to
extensively study the effects of our method compared to the adversarial baseline, we first create a
suite of toy datasets, each with different levels of bias. To do this, we utilize the Benchmarking
Attribution Methods (BAM) dataset [26], a custom dataset specifically tailored to create object-class
co-occurences. The main task is scene classification, using the MiniPlaces dataset [28]. To create the
co-occurrences, they extract 10 types objects from COCO to be able to crop onto the original images
from MiniPlaces, at random spatial locations. With this setup, we are able to induce an artificial bias,
using the presence of two object types as the protected attribute. Specifically, we choose the truck
and zebra objects to represent the binary attribute A; we ignore the other objects for this study.

Figure 2: Example images from BAM [26], in the class “bowling_alley.” Left half: Randomly pasted
trucks. Right half: Randomly pasted zebras.

We then introduce a ratio ρs ∈ [0, 1], representing the % of images in a specific scene class s that have
a cropped truck in them; the remaining 1− ρs images of scene s will have a cropped zebra. Thus, ρs
can be thought of as just the co-occurrence of the truck object with scene s. In the ideal case, we
hope that training datasets have ρs = 0.5 for every class. To deviate from this setting, we first choose
a specific biased subset K ⊆ [N ] of classes that will have a different ratio ρK; any classes not in this
subset retain a ratio of 0.5. Our hope is that the model will exhibit biased behavior in this subset of
images. To verify this, we do standard training the same CNN but on datasets with different ρs for a
specific class, and saw a strong linear correlation between ρs and the class’s resultant projection bias
(refer to Appendix C, Figure 2). Lastly, with the introduction of subset K, we end up with another
factor to control. Specifically, we additionally study different cardinalities of K: {1, 3, 5, 7, 10}. We
randomly choose which classes will be in K; in addition, every class in K will have the same ratio ρK
of trucks/zebras.

5 Results

BAM. We now compare (1) Standard Training (Baseline), (2) Adversarial Debiasing, (3) Meta
Orthogonalization Debiasing across our evaluation metrics on the various setups of BAM. Our goal
is to study how varying the bias ratio ρK affects these models. Figure 3 studies this relationship
when only modifying the co-occurrence ratio ρK in the class bowling_alley. In the Opportunity
Discrepancy and Model Leakage curves, we see that standard training (red curve) results in clear
parabolic shapes; the closer ρK is to 0.5, the less bias that can be observed, as every class now
becomes balanced in the number of trucks and zebras pasted in the training dataset. However, once
this ratio deviates from 0.5, this bias drastically increases. Therefore, optimally we would like both
of these values to stay minimal and at the same level of bias found in the balanced dataset case. We
find that this indeed occurs for both debiasing methods. Meta Orthogonalization (purple) remains

4This refers to instance variables corresponding to official implementations of ResNet in PyTorch. They can
be found here: https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
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Figure 3: Measuring our four metrics on BAM, as ρK varies. K consists of a single class, “bowl-
ing_alley.” Optimal shapes for Opportunity Discrepancy and Model Leakage (left two curves)
should be flat and minimized if debiased. We see our model consistently does better than the standard
training (Baseline), and is comparable to adversarial debiasing. Optimal Projection and Sensitivity
Bias (right two curves) should at the y = 0 line, which is closest to our model.

marginally better for most ratios until 1.0, but adversarial debiasing maintains a consisitently lower
model leakage. However, it is promising that our method behaves similarly to a strong debiasing
method.

In the right two curves of Figure 3, we plot the projection and sensitivity biases as well. Ideally, we
desire orthogonal concept vectors, therefore, the optimal measurement should be at the y = 0 line;
it is evident that Meta Orthogonalization attains the most optimal results for projection bias. This
is expected, because this is exactly what our regularization term aims to do: concept class vectors
learned from the trained model should be orthogonal to a learned gender direction. The projection
bias of the adversarially trained model minimally deviates from standard training, indicating that
any information about gender that remains in the model is still highly correlated to features useful
to predict for the downstream classes. Sensitivity bias has less clear differences, but we see that
ours is closer to 0, and has smaller variance compared to the two other models. We suppose this
could be because the gradient can largely deviate between different inputs [23], thus containing less
directed information about the class and acting more similarly to randomly sampled vectors (and thus
projections are already near 0) [5].

Lastly, we include Figure 4 with our results of |K| = {3, 5, 7}. We find the case 10 to be another
trivial case because the ratios within each class is now the same, but show these results separately in
Appendix A, Figure 1. We find similar trends in the remaining cases, but notice weak points of our
method. Notice that in the Opportunity Discrepancy column, we end up with little to no improvement
in the edge ρK cases for 5 Class and 7 Class. This is similar to adversarial debiasing, but theirs
remains strong at ρK = 1, while ours does not. This trend is also exhibited in Model Leakage, but
for the most part is similar in performance. With respect to the projection and sensitivity biases, we
notice a considerable shrinking effect: the projection bias of the standard CNN decreases as the size
of the biased set increases. We suppose that this occurs because the truck/zebra bias is now shared
between more and more classes, and therefore the individual correlation between a class and the bias
direction decreases. This is analagous to sensitivity bias, where the variance even decreases as the
size of the biased set increases. Regardless, our method is still closer to 0 and thus has more desirable
properties in these cases, including standard accuracy which we report in Appendix D, Table 1.

COCO. To test our framework on a more real-world dataset, we opt to apply the same ideas to
COCO object detection, of the images containing people. This slightly changes the framework, where
instead of a single classification problem, each input has 79 predictions, one per object label. The
bias attribute now refers to Male/Female images [25]. Refer to Appendix C for details on training.
Because we have separate binary classifiers, sensitivity bias is slightly modified – we now compute the
gradient of each output logit given the input has that object. As before, we average each metric across
classes. We provide these values in Table 1. We surprisingly find that for discrepancy, the model
provided by [25], adv@image, actually increases the discrepancy value. Although [25] provide bias
interpretations through their adversarial masks in this model, this actually ends up widening the
Opportunity Discrepancy, a crucial fairness statistic. On the other hand, our model indeed decreases
this value, but remains within the standard deviation ranges.
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Figure 4: Analagous to Figure 3, but including |K| = {3, 5, 7} (Top, Middle, Bottom, respectively).
We plot the average of the class specific metrics. Our model consistently performs on par with
adversarial debiasing, with added projection and sensitivity bias improvements. We do notice
decreased results at the 7 Class, ρK = 1.0 experiments, indicating that the model has not been fully
debiased with our method.

Meta Orthogonalization also provides lower leakage, even with their best model of adv@conv5. Even
though we do not force the network to ignore gender specific features at a specific layer, we show that
the logits of our model are still able to obfuscate the gender prediction by a wide margin. According
to Wang et al. [25], our model almost reaches the natural leakage of this dataset (∼ 60), near optimal
in their case. As expected, projection bias is significantly reduced; note that the linear classifiers used
for evaluation are distinct from the ones obtained from training, to show that retraining them from
scratch can also result in our desired orthogonality property. Lastly, we find that sensitivity bias in the
baseline is not as prevalent, already being near 0. However, we do see our model attain marginally
smaller sensitivity, in addition to a smaller variance of values, thereby mimicking the results of our
BAM setup.

6 Discussion

We now highlight a few key points we notice in our results. First, Meta Orthoganalization almost
always performs comparably with Adversarial Debiasing across our evaluation metrics. The main
situation that it fails is when |K| = 7 when studying BAM. We think more careful hyperparameter
tuning may fix this, but were unable to do so that worked across all situations in Figures 3 and 4.
This is important, in that real datasets may not have an expected measure of bias as we did when
controlling ρK.
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Table 1: COCO Results
Model Discrepancy Leakage Projection Bias Sensitivity Bias

Baseline 0.1314± 0.0217 70.46∗ −0.4086± 0.0243 0.0172± 0.0185
adv@conv5 — 64.92∗ — —
adv@image† 0.1400± 0.0200 68.49∗ −0.4225± 0.0275 0.0165± 0.0141
Debias(Ours) 0.1245± 0.0189 61.07 0.0003± 0.0416 0.0066± 0.0067

As before, lower is better for Discrepancy and Leakage, and closer to 0 is better for Projection
and Sensitivity. We find our debiasing algorithm results in more favorable results across the board.
We also provide standard errors for Discrepancy, and standard deviations for Projection Bias and
Sensitivity Bias, across COCO object classes. ∗ denotes obtained from [25], Table 4. † denotes
results using model provided by [25].

Another finding is that in terms of the fairness metrics, opportunity discrepancy and model leakage,
our method is able to obtain ideal results, even though we do not explicitly encode for this in the
loss. Our regularization term does not enforce as strong of a constraint as an adversarial loss (i.e.
removing necessary information for predicting the protected class), but can still be fair according to
definitions in literature. In addition, our method is still able to retain predictive information for all
concepts and protected attributes, but by applying the meta-loss, disentangles this information from
the downstream classification task. We leave possible theoretical connections with our method and
these mathematical definitions to future work.

Lastly, through the varying parameters on K, we provide more evidence that the more co-occuring
sets of objects are, CNNs tend to ignore this information [26]. Specifically, when we increase the size
of the biased set, the breadth of bias shrinks across varying ratios. To see the effect on the unbiased
set, refer to Appendix A, Figure 1. We see more increased bias in the “unbiased” set, even though the
have equalized ratio of the protected attribute. In addition, whenever K encompasses all labels in the
dataset, nearly zero bias is seen across the evaluation metrics.

Future Work. As mentioned, it is still open as to the mathematical connection between orthogonal
concept directions and specific fairness definitions; as of this point we only have empirical evidence.
An interesting idea that could work is a slight modification to the Debias Loss (Equation 4). Instead
of enforcing class concepts to be completely orthogonal to the bias direction, we can have a weakened
version, based off of a threshold t. This may be useful by having different thresholds per class,
since in real datasets, every class will be affected in different ways, rather than sharing a uniform
biased ratio ρ. Lastly, it would be interesting to see how this can affect more complex downstream
tasks that would utilize the debiased CNNs from our method, rather than a simple prediction. For
example, Hendricks et al. [12] aim to debias image captions. Meta Orthogonalization can still be
applied, because the loss does not take into account anything about the downstream task; it would be
interesting to see if it can also avoid biased image captions.

7 Conclusion

In this work, we propose Meta Orthogonalization as a way to debias convolutional neural networks
by pushing image concepts to be orthogonal to a learned bias direction. In addition, we provide a
methodology to simulate various levels of bias and situations in a dataset, through the use of BAM
[26], a recent dataset of object co-occurrences. We show that across various fairness metrics, our
method performs comparably, if not better, to adversarial debiasing, even on COCO [16]. Through
extensive analysis on various trends of bias, we have shown promising empirical results for our
method, indicating that there may be a strong connection to bias learned in CNNs and geometric
properties of their activation spaces.
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Broader Impact

Systemic bias is a pervasive issue today, and as more complex models are used by governing bodies,
it is imperative that we can provide methods that will mitigate the propagation of harmful biases.
Currently, adversarial debiasing has portrayed its strengths in many applications, but we have shown
that other methods may be needed, especially for image tasks. We show that enforcing concept
orthogonality, a natural objective, in CNNs is a viable and easily interpretable alternative to doing
so. This can open up increased possibility for researchers to explore other ideas integrating fairness
and interpretability together. It must be said, however, that practictioners should take caution in
utilizing this framework, or any other debiasing algorithm. Our datasets in particular have been highly
controlled, and do not fully reflect bias that may occur in practical applications. It should always be
important to test simple fairness definitions before fully deploying debiased models.

References
[1] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert

Müller, and Wojciech Samek. On pixel-wise explanations for non-linear classifier decisions by
layer-wise relevance propagation. PLoS ONE, 10, 07 2015.

[2] Alex Beutel, Jilin Chen, Zhe Zhao, and Ed H. Chi. Data decisions and theoretical implications
when adversarially learning fair representations. CoRR, abs/1707.00075, 2017.

[3] Tolga Bolukbasi, Kai-Wei Chang, James Y Zou, Venkatesh Saligrama, and Adam T Kalai.
Man is to computer programmer as woman is to homemaker? debiasing word embeddings. In
D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural
Information Processing Systems 29, pages 4349–4357. Curran Associates, Inc., 2016.

[4] Aylin Caliskan, Joanna J. Bryson, and Arvind Narayanan. Semantics derived automatically from
language corpora contain human-like biases. Science, 356(6334):183–186, 2017. ISSN 0036-
8075. doi: 10.1126/science.aal4230. URL https://science.sciencemag.org/content/
356/6334/183.

[5] Zhi Chen, Yijie Bei, and Cynthia Rudin. Concept whitening for interpretable image recognition.
In arXiv, 2020.

[6] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adap-
tation of deep networks. In Proceedings of the 34th International Conference on Machine
Learning - Volume 70, ICML’17, page 1126–1135. JMLR.org, 2017.

[7] Ruth Fong and Andrea Vedaldi. Net2vec: Quantifying and explaining how concepts are encoded
by filters in deep neural networks. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2018.

[8] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario Marchand, and Victor S. Lempitsky. Domain-adversarial training of neural
networks. J. Mach. Learn. Res., 17:59:1–59:35, 2016.

[9] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances in Neural
Information Processing Systems 27, pages 2672–2680. Curran Associates, Inc., 2014.

[10] Moritz Hardt, Eric Price, Eric Price, and Nati Srebro. Equality of opportunity in supervised
learning. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances
in Neural Information Processing Systems 29, pages 3315–3323. Curran Associates, Inc., 2016.

[11] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778, 2016.

[12] Lisa Anne Hendricks, Kaylee Burns, Kate Saenko, Trevor Darrell, and Anna Rohrbach. Women
also snowboard: Overcoming bias in captioning models. In Vittorio Ferrari, Martial Hebert,
Cristian Sminchisescu, and Yair Weiss, editors, Computer Vision – ECCV 2018, pages 793–811,
Cham, 2018. Springer International Publishing. ISBN 978-3-030-01219-9.

9

https://science.sciencemag.org/content/356/6334/183
https://science.sciencemag.org/content/356/6334/183


[13] Masahiro Kaneko and Danushka Bollegala. Gender-preserving debiasing for pre-trained word
embeddings. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, Florence, Italy, July 2019. Association for Computational Linguistics.

[14] Been Kim, Martin Wattenberg, Justin Gilmer, Carrie J. Cai, James Wexler, Fernanda B. Viégas,
and Rory Sayres. Interpretability beyond feature attribution: Quantitative testing with concept
activation vectors (tcav). In ICML, 2018.

[15] Sebastian Lapuschkin, Stephan Wäldchen, Alexander Binder, Grégoire Montavon, Wojciech
Samek, and Klaus-Robert Müller. Unmasking clever hans predictors and assessing what
machines really learn. Nature Communications, 10(1), Mar 2019. ISSN 2041-1723. doi: 10.
1038/s41467-019-08987-4. URL http://dx.doi.org/10.1038/s41467-019-08987-4.

[16] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C. Lawrence Zitnick. Microsoft coco: Common objects in context. In David Fleet,
Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars, editors, Computer Vision – ECCV 2014,
pages 740–755, Cham, 2014. Springer International Publishing. ISBN 978-3-319-10602-1.

[17] David Madras, Elliot Creager, Toniann Pitassi, and Richard Zemel. Learning adversarially fair
and transferable representations. In Jennifer Dy and Andreas Krause, editors, Proceedings of
the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pages 3384–3393, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018.
PMLR.

[18] Sachit Menon, Alexandru Damian, Shijia Hu, Nikhil Ravi, and Cynthia Rudin. Pulse: Self-
supervised photo upsampling via latent space exploration of generative models. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020.

[19] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed rep-
resentations of words and phrases and their compositionality. In C. J. C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Q. Weinberger, editors, Advances in Neural Information
Processing Systems 26, pages 3111–3119. Curran Associates, Inc., 2013.

[20] Grégoire Montavon, Sebastian Bach, Alexander Binder, Wojciech Samek, and Klaus-Robert
Müller. Explaining nonlinear classification decisions with deep taylor decomposition. Pattern
Recognition, 65:211–222, 2017. doi: 10.1016/j.patcog.2016.11.008.

[21] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for
word representation. In Empirical Methods in Natural Language Processing (EMNLP), pages
1532–1543, 2014. URL http://www.aclweb.org/anthology/D14-1162.

[22] Sylvestre-Alvise Rebuffi, Ruth C. Fong, Xu Ji, and Andrea Vedaldi. There and back again:
Revisiting backpropagation saliency methods. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2020.

[23] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg. Smooth-
grad: removing noise by adding noise, 2017.

[24] Christina Wadsworth, Francesca Vera, and Chris Piech. Achieving fairness through adversarial
learning: an application to recidivism prediction. CoRR, abs/1807.00199, 2018.

[25] Tianlu Wang, Jieyu Zhao, Mark Yatskar, Kai-Wei Chang, and Vicente Ordonez. Balanced
datasets are not enough: Estimating and mitigating gender bias in deep image representations.
2019 IEEE/CVF International Conference on Computer Vision (ICCV), pages 5309–5318, 2019.

[26] Mengjiao Yang and Been Kim. Benchmarking Attribution Methods with Relative Feature
Importance. CoRR, abs/1907.09701, 2019.

[27] Brian Hu Zhang, Blake Lemoine, and Margaret Mitchell. Mitigating unwanted biases with
adversarial learning. In Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and
Society, AIES ’18, page 335–340, New York, NY, USA, 2018. Association for Computing
Machinery. ISBN 9781450360128. doi: 10.1145/3278721.3278779. URL https://doi.org/
10.1145/3278721.3278779.

10

http://dx.doi.org/10.1038/s41467-019-08987-4
http://www.aclweb.org/anthology/D14-1162
https://doi.org/10.1145/3278721.3278779
https://doi.org/10.1145/3278721.3278779


[28] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A
10 million image database for scene recognition. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2017.

[29] Bolei Zhou, Yiyou Sun, David Bau, and Antonio Torralba. Interpretable basis decomposition
for visual explanation. In Proceedings of the European Conference on Computer Vision (ECCV),
September 2018.

11


	1 Introduction
	2 Related Work
	3 Background
	4 Method
	5 Results
	6 Discussion
	7 Conclusion

